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1. INTRODUCTION

Let X be a compact subset of a closed interval {a, b] and assume that X
contains at least n 4 1 points for some fixed nonnegative integer n. Denote
by C(X) the space of all continuous real-valued functions defined on X. Let
£l = max,ey | f(x)| if fe C(X). Let {k;}?_; be a fixed set of nonnegative
integers satisfying 0 << ky <k, < «+ < k, < nand let {{;}?; and {u;}?, be
fixed extended real-valued functions defined on X satisfying for each
i = 1,..., p the following conditions:

(i) I, may take the value —co but never 4 0.
(i) u, may take the value + oo but never — co.
(i) Xi={xeX:l(x) = —0}tand X;* = {xe X : u;(x) == +oo}are
open subsets of X.
(iv) [; continuous on X — X;~ and ¥; is continuous on X — X;t.
v L <u;forallxeX.

We note that, among other things, these assumptions assure the existence of
an e > 0 for whichu; — [; > eforall xe Xand alli = 1,...,p

* Supported in part by NSF Grant GP-12088.
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APPROXIMATION WITH RESTRICTED RANGE DERIVATIVES 217

Let [1,, be the collection of all algebraic polynomials of degree less than or
equal to n, and define

K={@ell,: I{x) < P*(x) < ux) forali xe Xand i=1,.., ph

We shall always assume herein that K contains more than one function and
also that there is a function g, € K satisfying /{(x) < g{*(x) < u,(x) for all
xeXandi=1,.,p.

In this setting we will investigate the problem of approximating functions
in C(X) by functions in K. Thus for f'e C(X) we shall say that Pe K is a best
approximation to fif || f — P < | f— g/l for all g € K. The existence of a
best approximation corresponding to each f e C(X) follows from the fact that
K is a closed subset of a compact subset of C(X). The main problem studied
in this paper is that of the characterization and uniqueness of these best
approximations.

This paper is a generalization of the work of G. G. Lorentz and
K. L. Zeller [2] and also of R. A. Lorentz [3] and of J. A. Roulier [4]. These
papers study the problem when

;=0 and U; = -0
or

i=—o and U =

are the only possibilities.

It also generalizes the work of G. D. Taylor [5]and [6] in which p = 1 apnd
k,; = 0. The methods employed in this paper are essentially the same as those
in [2] and [3] modified to fit our case.

2. CHARACTERIZATION OF BEST APPROXIMATIONS

We first introduce some special notation. Fix fe C(X) and Fe K. Let
E ={xeX:f(x) —P(x)=If—rpi
E ={xeX:f(x) - Plx) = —|l/—plk
E} ={xeX: P"x) =), i=1..p,

El={xeX: P"(x) = u(x)}, i=l..,p.

These sets contain the “critical points” and will be used in our main
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characterization theorem. We always assume f¢ K. We note here and
throughout that £, , £_, E_?, E_? all depend on fand P but this dependence
will be suppressed in the notation unless absolutely necessary.

If k;, = O then we may as well assume that (E, U EYN(E_ VU E_Y) = 7,
since otherwise it is easily seen that P is a best approximation for f from K.
We note that in the most “natural” situation for k; = 0 [namely,

L(x) < f(x) < uy(x)]

this is the case.
The proofs of the three characterization theorems which follow are
omitted since they are essentially the same as the corresponding proofs in {2].

THEOREM 1. Let fe C(X) and P € K. Then P is a best approximation for |
Jrom K if and only if

max  [f(x) — P(x)]q(x) =0 6y

weE, UE._
Jor each q e I, satisfying
1) < P¥x) — 4%(x) < ) @
forallxeXandi=1,..,p.

[If ky = 0 we assume (E, UEY)YN(E_UEY = ]

Our goal now is to alter this theorem to make it more useful in recognizing
polynomials of best approximation. Our end result will be characterization
theorems like those in [2] in terms of the nonexistence of solutions to certain
Birkhoff interpolation problems. This, together with the interpolation theory
of Atkinson and Sharma [1], will be the tool used in handling the problem of
uniqueness.

THEOREM 2. Let fe C(X) and P € K. Then P is a best approximation to f
Jrom K if and only if there is no polynomial q € I1,, satisfying
(sgn[f(x) — P(¥)]) q(x) <0, for xeE, VE_ 3
and

g% (x) >0 on E_
4

¢ x) <0 on EJ} i=1,.,p.
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It is clear that we may replace (4) by

¢"x) =0 on E,

o~
L
h—g

¢*(x) <0 on E,.

We wish to improve this characterization once again. For brevity of
notation in the following theorem we let

o(x) = sgn[/(x) — P(x)].

THEOREM 3. A polynomial P € K is a polynomial of best approximation for
a given fe C(X) if and only if there exist points x;e E. UV E_j=1,..,u;
yheE =1, At yyeE L j=1,., A, i=1..pwith

Ut At T AT AT <2 (6)
Jor which there is no q € I, thar satisfies
alx) q(x;) <0, j=1L..,u, D
g Ny <0,  j=1,. A% i=1,.,p, (8)
¢ >0, j=l.uAo, i=1..p, (9

or, equivalently, if and only if there exists such points x; ., yi;, y;; and corye-
sponding constants b; > 0, bj; > 0, b;; < 0 for which

23 o A_)+ )‘2_ ¢ K
. bots) aCe) + Y. |3 656™ 09 + 3. baa ™G] =0 (10)

i=1 Y1 j=t
holds for all polynomials g € I1,, .

The proof of this theorem is the same as the proof of Theorem 3 in [2].
One makes use of a theorem of Caratheodory on convex hulls.

Note that in Theorem 3 we must have

(ko + DA AN+ ok, - DA, A7) =0+ 2.

Otherwise the Hermite interpolation problem is solvable, which assigns
arbitrary values to ¢ at the points x; and to ¢, ¢° ..., g**# at the points ¥ , y;; .

Fix K corresponding to 0 << k; <k, < - <k, <z and {{}7, and
{u;}I; as above. Fix fe C(X). If k; = 0 then we shall assume that /;(x) <
J () < uy(x) in what follows. Then the set of all best approximations from &
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to f'is a compact, convex set # in C(X). Among all polynomials in # we
single out those with the smallest sets £, U E_, E,* and E_%.

DeriNITION.  We call a polynomial P, e # minimal for f if for any other
P € # we have degree of P < degree of P,,

E(Py) U E_(Py) CE(P)V E_(P),
EH(P)CEXP), i=1,.,p,
E_i(P)CEP), i=1,.,p;

and if, moreover, P(x) and Py(x) coincide on E. (Py) U E_(Py).

THEOREM 4. For each fe C(X) there exists a minimal polynomial
of best approximation from K. [As above, if k; = 0 we assume that
L(x) < f(x) < wy(x).]

Proof. Set E, = (\peg E(P) and E_ = (\pey E_(P) for a fixed f e C(X).
Also set E." = (Ypeg E;(P) and E ! = (Npeg EXP), i=1,.,p. f &
consists of only one function then the theorem is trivially true. Thus assume #
contains more than one polynomial. Fix i and consider E% If Py, P,e #
then 7 € E_ ¢ implies P{*(¢) = P{*(¢). Thus either E.?is finite or E,* = E_(P)
for any P € 4. Similarly, E_? is finite or E_? = E_i(P) for any P € #. Thus we
can find a finite number of polynomials P, ,..., Py € # for which

N
E} = ﬂ EX(P))
-
and

N
E—-i = n E—i(PJ')’ i= 1:---:]7:

j=1

Noting that E, and E_ are disjoint sets, we can show as above that both
E, and E_ are finite sets. Thus there is a finite set of polynomials
0 ..., OQp € & s0 that

]

E = (VEQ) and E =()E(Q).
=1

i=1

Thus taking the polynomials P, ,..., Py and Q,..., @, and renumbering
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them as R, ,..., R; we have

»l

E+ = E—e—(Rv):
V=1
L
E_ - ﬂ E—(Rv)7
y=1
L
E; = ﬂ E.XR), i=1..,p
p=1

L
Ei=(YEXR), i=1,.,p.
p=1

Now let P* = (1/L) Zf=1 R, . Then P*e B and E(P¥) =E_ ,E(P¥)=E_,
EP*y = E EX(P*) = E_, i=1,.,p If degreec of P* > degree of P
for any other Pe %, let P* = P,. Otherwise, let P; be an element in & of
highest degree. Then ¥(P* 4 Py) = P, %, degree P, > degree P*, and

E(Py) = E, E_(Py) = E_,
E\i(Py) = Ei, EP)=E" i=1,.,p.

Moreover, if P is any other element of # then P, P*, and P, ccincide on
E._ U E_and degree P, > degree P. This completes the proof.

3. UNIQUENESS

Uniqueness in general does not hold for this problem. For example, if the
u; and I; are not differentiable functions then we need not have a unique P K
of best approximation for a given fe C(X).

let X = [—1, 1] and n = 2. Assume

p—_-l, kp:kl:l;

_ _ x+1 on [—1,0]

th(x) =2 and I(x) l—x+1 on [0,11.
If f(x) = —x then there is no unique best approximation for f from X for
this problem. In fact, if Py(x) = ax? + x — @ thenforeachae[—}, +3}] P,
is a best approximation to this f from K. We omit the proof of this statemeni
since it is easily verified.
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It is also easy to see that if k; = 0 and if f(x) << Li(x) or f(x) = uy(x) then
unique best approximation need not occur in general.

So, to our assumptions (i)—(v) and the others in Section 1 we add the
following assumptions:

(viy X = [a, b}.

(vii) Either u,(x) == o0 for all xe X or u; is differentiable at each

x € (a, b). Either I{x) = —oo for all xe X or [; is differentiable at each
x € (a, b).

(viii) In the case that k; ., = k; + 1 we have u; = o0 or u,’ = u;,
or u; = I,;. Also in this case we have [; = —o0, I, = u;qor Iy = L, .

(ix) If ky = 0 we assume /4(x) < f(x) < uy(x).
We also have need of some additional notation:

1 is the number of elements in E.°.
I is the number of elements in E_*.
m, is the number of elements in £ _.
m_ is the number of elements in E_.
et is the number of elements in E,* N {a, b}.
e’ is the number of elements in E_* N {a, b}.

Here, as before, we have suppressed the fact that E, , E_, E %, E_? depend
on fand P. Also, we allow the possibility of some of the above numbers being
infinite.

As in [2] and in [3] the critical tool in studying unigueness of best approx-
imation is the notion of “free” or “poised”” matrices and the corresponding
Birkhoff interpolation problem, which we shall henceforth abbreviate as BIP.
We will be as brief as possible in describing these problems, giving only the
necessary notions and results pertinent to our situation. Let E = (e;;) be
an mX(n + 1) matrix [ = 1,..., m; j = 0,..., n. We assume E has only ones
and zeros as entries. Let e = {(i,j) |e;; = 1}. The matrix E is called an
incidence matrix. Even though it is usually assumed that E has exactly (z + 1)
nonzero entries we will dispense with this restriction for convenience, adding
it in as a hypothesis where necessary.

If the number of nonzero entries is # + 1, then for any choice of real
numbers x; << x, << -+ < x,, and b;; for (i, j) € e, we associate with E the
following BIP, where Q is assumed to be a polynomial of degree # or less:

09(x;) = by; (,Dee.
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Similarly, if
@) g
Q7 (y) =08; O0<%;<n

is a BIP for a polynomial Q €Il, (with = -+ 1 conditions) then we may
associate with this BIP an incidence matrix £ with (# + 1) nonzerc entries.
Let Ay << -+ << A, be the points y; arranged in increasing order. We define
E = (e;;) where e;; = 1 if QUXA;) is one of the conditions and ¢ = &
otherwise.

If such a BIP has a unique solution regardless of the choice of the x; and
the b;; , then the associated incidence matrix £ is said to be firee or poised.

Let £ be an incidence matrix and define m; = ¥, e, j = 0, L., n
Then F is said to satisfy the Polya condition if, foreach k = 0, 1,...,n

k
ijEk—i-l- {*}

A maximal sequence of the incidence matrix F is a sequence of 1's
(e +---» €;;,.7) which can not be extended to a longer sequence of 1’s in row {
of E. This maximal sequence is a supporied maximal sequence if there exist
integers 0 < jo . /s <jand 1 < iy <i <iy < mforwhiche,; = ¢; g, = L
If each supported maximal sequence has an even number of elements then E
is said to satisfy the Atkinson-Sharma (A-S) condition. K. Atkinson and
A. Sharma in [1] proved:

THEOREM 5. If the mx(n -+ 1) incidence matrix E [with (n + 1) nonzero
entries) satisfies both the A-S and the Polya conditions then E is free.

It is this theorem which will be used to study uniqueness of best approxi-
mation. It is used in much the same way as in [3].

In the next two lemmas we assume that e C(X) and that P, is a fixed
minimal polynomial of best approximation to f as described above. In
addition £, , E_, E, E_¢ are the scts corresponding to this P, and this /.

LemMA 1. Let P % and define D = P, — P. Let v = exact degree of D.
Then

DY () =0, ye(EJUENN{@b) j=l.,p (1
If ks = k; -+ 1 for some j, where k; < v, then

E,jUEC{a,b. a2
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Proof. Letye E.J N (a,b),then

Pi(y) = I(y).
and
P¥(y) = I(y)
Moreover,
P (y) = ()
otherwise P{*’(y) — I,(y) would change sign at y. Similarly,

PED(y) = I/(y),
Hence,
D(kj+1)(y) = 0.

We proceed similarly for y € E_# N (a, b).

Suppose k;,; = k; + 1forsomejwithk; < v.Ifl; = —wthen E,7 =
So, assume /; = — oo, It follows then, from assumptions (vii) and (viii) that
both P{*? — I; and P®» — [, are both increasing on [a, b] or both decreasing
on [a, b]. Without loss of generality assume that they are both increasing
on [a, b]. If y, € (a, b) N E,? then P{F?(yy) — I{y,) = 0 and so

P7() = h(y) =0 for a<y<y,.

Thus (a, yo] C E,5. Hence P¥(y) — [(y) = 0 for a <y < y,. Thus we
have P{%(y) — P®)(y) = 0 for a < y < y, and so D% = 0. But this is
impossible since k; << v. Hence E 7 C {q, b}. Similarly we show E_7 C {a, b}.
This completes the proof of Lemma 1.

If Pe# and P # P, and fe Cla, b] we associate with P and f a certain
incidence matrix E. We see that E, U E_ is finite and we let v represent the
exact degree of P, — P. Moreover, let x; , y;;, yj; represent the elements of
E.UVE_, E* and E_, respectively, for k; < v. This is possible since /.7
and /7 are finite for k; < v.

We now define the incidence matrix E corresponding to the following BIP:

(a) O(x;) = oy i=1,...,m_-+m_;
(b) Q(kj)(l’;;') = By k; <
©  O¥0R =va k<wi=1.,05%
@ Q%"(pH) =8; a<yi<b k+1<y, i=1,.,157%
© O*UR = a<yn<b k+1<

v, i = 1,.., 7

v, i = 1,.., 17,
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In the case k; = 0 we fit conditions (b) and (¢} to agree with (a) whers
necessary.

LemMa 2. The matrix E corresponding to conditions (a)-<{e) satisfies the
A-S condition and the Polya condition.

Proof. We first note that conditions (b)—(e) do not overiap if &, > 1.
This follows easily from (11) and (12). Hence, for &; = 1 and @ < y};,
¥;; < b conditions (b)-(e) come in nonoverlapping pairs. If k; = 0 then
overlapping is possible in the first column of £ between condition (a) and
conditions (b) and (c). But in these cases the 1 is not the beginning cf a
supported sequence. Thus £ satisfies the A-S condition.

We will now show that F satisfies the Polya condition. Since ||/ — P, |
is attained for at least one point m, -+ m_ > 1. Hence (*) is satisfied for
k = 0. Assume (*) is not satisfied for some &k, 0 << £ < ». Let k, be the
smallest k for which (*) fails. Consider the incidence matrix £, that consists
of the columns of £ numbered from 0 to (k, — 1). By assumption then

I

Ao

m; < k()
0

It

i
and (*) is satisfied for 0 << & < k, — 1. Thus
ko—1
> omy =k
j=0
Hence we have
Eo—1

Yo m; =k, and g, = 0.
i=0

Since the k,th column of E has only zeros, no maximal sequence of £
can cross this column. Hence, F, must satisfy the A-S condition. Consider
the BIP for a polynomial Q of degree < k, — 1 corresponding to £, with
values

Qx) = —olxy) i=1,..,m_ +m_,

0"(yH =0 k< kg—1, 0= 1,17

Q% (y) =0 ky <hkg— 1, i=1,.,17, (13)
QU Y(pEy =0 ki +1<ki—1,a<yi<b i=1,.1/
Q¥ () =0 ki+1<ko—1,a<y5<b i=1,.,17

Remember that o(x) = sgn[f(x) — P(x)].
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We note that if k; == 0 and if y;; € E, then we define

Q0T = ~1=0(x), ek,

Likewise if yj; € E_ we define Q%(y;) = 1 = Q(x;), x;€ E_. The cases
yi; € E_ and y7, € E. may not occur because of assumption (ix). That is
ENEl=gand E,NE')= gifk; =0.

Thus no contradictions occur in (13) even if overiapping occurs in the
1st column. Since E, satisfies the Polya condition and the A-S condition it is
poised. Hence a unique polynomial Q of degree < ky — 1 satisfying (13)
exists. But if k& >k, — 1, O®(x) = 0. Hence (3) and (5) are violated;
a contradiction. And so, E satisfies the Polya condition.

THEOREM 6. Let fe Cla, b], n = 0 and K be as above with the additional
restrictions (Viy-(ix). Then among all polynomials in K there is exactly one best
approximation to f.

Proof. Let P, be a minimal polynomial of best approximation for f.
Assume that the exact degree of P, is v, . Assume that there is another
polynomial P of best approximation. Then degree of P < »,. Define
D = P, — P. Let v be the exact degree of D. Then » <v,. Let £, E_,
E, E_? be those for P, and f, and m,, m_, 1%, [ * the numbers corre
sponding to these sets. Since we assume P, = P we see that m, and m_ are
finite, otherwise D = P, — P = 0 and we would be done. Also since
deg D = v we see that /,¢ and /_? are finite for all 7 for which k; < v.

Let x;, j = 1,..., m, + m_ represent the points of E,. U £ _ and let yj,
y7; represent the points of E,7 and E %, respectively. D satisfies the following
conditions:

D(x,) =0 i=1.,m_ +m_,

D¥N(yhy =0  k;<v, i=1,.,17,
DE(yp) =0 ks <w, i=1,.,1], (14)
DU V(yEy =0  a<yh<b, ky <v, i=1,.,17,
DEFI(3=y = 0 a<yp<b k;<v, i=1,.,017

Let E be the incidence matrix corresponding to (14). The incidence matrix
corresponding to these conditions is exactly the £ of the previous lemma.
Let N represent the total number of 1's in E. Then since E satisfies the Polya
condition we have

N=Ym=>=v+1
=0
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So, if necessary, we may extend £ by adding columns of zeros numbering
from » -+ 1 through N — 1. If N = v + 1 this is not necessary. This assures
then, by the A-S theorem, that £ is free. Thus D = 0§ since the only poly-
nomial of degree <{ N — 1 satisfying (14) is identically zero and v << N — 1.

We note that in Lemma 2 if &, = 1 E satisfies the strong Polya condition

E
Ymy=k+2  k=01l.,v—1 (%)

=0

The proof is an obvious modification of the proof of Lemma 2.

The authors have made no attempt to obtain a Remez algorithm for this
case as in [7], nor have they attempted to consider the case for L,[a, 5] as
in [3]. These remain open questions.

The authors have learned that Chalmers [8] has generalized these results in
a more recent paper to appear in Transactions of the American Mathematical
Society. In this paper this problem occurs as a special case.
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